Utilities module#
- class napari_stress.utils.TimelapseConverter#
This class allows converting napari 4D layer data between different formats.
- data_to_list_of_data(data, layertype: type) list #
Convert 4D data into a list of 3D data frames
- Parameters:
data (4D data to be converted)
layertype (layerdata type. Can be any of ‘PointsData’, SurfaceData,)
ImageData
LabelsData
List[LayerDataTuple]
or (LayerDataTuple)
pd.DataFrame.
- Raises:
TypeError – Error to indicate that the converter does not support the passed layertype
- Returns:
list
- Return type:
List of 3D objects of input layertype
- list_of_data_to_data(data, layertype: type)#
Function to convert a list of 3D frames into 4D data.
- Parameters:
data (list of 3D data (time)frames)
layertype (layerdata type. Can be any of ‘PointsData’, SurfaceData,)
ImageData
LabelsData
List[LayerDataTuple]
or (LayerDataTuple)
pd.DataFrame.
- Raises:
TypeError – Error to indicate that the converter does not support the passed layertype
- Return type:
4D data of type layertype
- napari_stress.utils.compile_data_from_layers(results_stress_analysis: list, n_frames: int, time_step: float) list #
Compile data from the results of the stress analysis into a list of dataframes.
- Parameters:
results_stress_analysis (list) – List of tuples containing the results of the stress analysis
n_frames (int) – Number of frames in the data
time_step (float) – Time step between frames
- Returns:
df_over_time (pd.DataFrame) – Dataframe containing the singular values results, e.g. results from the stress analysis that refer to a single value per frame. Columns:
- timefloat
Time of the frame
etc.
df_nearest_pairs (pd.DataFrame) – Dataframe containing the nearest pair extrema results. Columns:
- timefloat
Time of the frame
- nearest_pair_distancefloat
Distance between the nearest pairs of extrema
- nearest_pair_anisotropyfloat
Stress Anisotropy of the nearest pair
df_all_pairs (pd.DataFrame) – Dataframe containing the all pair extrema results. Columns:
- timefloat
Time of the frame
- all_pair_distancefloat
Distance between all pairs of extrema
- all_pair_anisotropyfloat
Stress Anisotropy of all pairs
df_autocorrelations (pd.DataFrame) – Dataframe containing the spatial autocorrelation results. Columns:
- timefloat
Time of the frame
- distancesfloat
Distances at which the autocorrelation was calculated
- autocorrelation_totalfloat
Autocorrelation of the total stress
- autocorrelation_cellfloat
Autocorrelation of the cell stress
- autocorrelation_tissuefloat
Autocorrelation of the tissue stress
- napari_stress.utils.export_settings(settings: dict, parent=None, file_name: str | None = None) None #
Export settings to yaml file.
- Parameters:
settings (dict) – Dictionary of settings
parent (QWidget, optional) – Parent widget for dialog, by default None
- napari_stress.utils.frame_by_frame(function: callable, progress_bar: bool = False)#
Decorator to apply a function frame by frame to 4D data.
- Parameters:
function (callable) –
Function to be wrapped. If the optional argument use_dask is passed to the function, the function will be parallelized using dask:
>>> @frame_by_frame(some_function)(argument1, argument2, use_dask=True)
Note: For this to work, the arguments (e.g., the input data) must not be passed as keyword argument. I.e., this works:
>>> @frame_by_frame(some_function)(argument1, argument2, some_keyword='abc', use_dask=True)
This does not work:
>>> @frame_by_frame(some_function)(image1=argument1, image2=argument2, some_keyword='abc', use_dask=True)
progress_bar (bool, optional) – Show progress bar, by default False. Has no effect if use_dask=True is passed as an argument to the input function function.
- Returns:
Wrapped function
- Return type:
callable
- napari_stress.utils.import_settings(parent=None, file_name: str | None = None) dict #
Import settings from yaml file.
- Parameters:
parent (QWidget, optional) – Parent widget for dialog, by default None
- Returns:
Dictionary of settings
- Return type:
dict